Two New Steroidal Saponins from Diuranthera inarticulata

Wei Li YANG¹, Jun TIAN¹, Qiang ZHANG², Shu Lin PENG¹, Li Sheng DING¹*

¹Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 ²School of Pharmacy, West China University of Medical Sciences, Chengdu 610041

Abstract: Two new steroidal saponins, diuranthosides D and E, were isolated from the whole plant of *Diuranthera inarticulata* Wang *et* K. Y. Lang. By means of spectral and chemical analysis, the structure of the new compounds were established as neotigogenin-3-*O*- β -D-glucopyranosyl (1 \rightarrow 3)- β -D-xylopyranosyl-(1 \rightarrow 3)-[β -D-glucopyranosyl(1 \rightarrow 2)]- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-ga lactopyranoside (1) and neotigogenin-3-*O*- β -D-glucopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-gal actopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-gal actopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-gal actopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-gal actopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-gal actopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-gal actopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-gal actopyranosyl(1 \rightarrow 4)- β -D-gal actopyranosyl

Keywords: Diuranthera inarticulata, Liliaceae, steroidal saponin, diuranthosides D and E.

There are only three species in the genus *Diuranthera* (Liliaceae), which is endemic in the southwest of China¹. Four steroidal saponins, diuranthosides A-C and chloromalo-side A were isolated from the fresh roots of *D. major*. This paper deals with the structure elucidation of two new steroidal saponins, diuranthosides D and E, which were isolated from the methanolic extract of whole plant of *D. inarticulata* Wang *et* K. Y. Lang.

Diuranthoside D (1), $[\alpha]_D^{22}$ -38 (c 0.08, pyridine), afforded galactose, glucose and xylose as sugar components and neotigogenin as an aglycone on acid hydrolysis on TLC. Its molecular formula was assigned as $C_{56}H_{92}O_{27}$ by HRFABMS. The IR, ¹H and ¹³C NMR spectra of 1 showed it was a neotigogenin 3-O-glycoside². The anomeric proton signals of the sugar moiety at δ_H 4.86, 5.12, 5.15, 5.25, 5.50 (each 1H, d, J \approx 7.5 Hz) suggested one galactose, one xylose and three glucose units are presented and all sugar linkages should be the β -configuration. The fragment ion peak at m/z 1033[M – glc]⁻, 901[M – xyl-glc]⁻ and 870[M – glc-glc]⁻ indicated only presence of terminal glucose

Wei Li YANG et al.

units and the xylose should locate in an inner position in the sugar chain. On comparison of the whole ¹³C-NMR spectrum of 1 with that of diuranthosides A^2 , a set of additional signals, corresponding to a β -glucopyranosyl unit appeared, and the signals due to xylose moiety varied, while all the other signals remained almost unaffected. It was observed that the signal of C-3 of xylose was markedly displaced downfield at $\delta_{\rm C}$ 86.4 and the remaining carbon signals were shifted upfield to various degrees. The ¹³C-NMR signals of sugar chain of **1** are almost the same as the signals of diuranthosides B^2 , which isolated from *D. major*². So this branched pentasaccharide moiety is identical with the sugar moiety of diuranthosides B. Based on the above evidence, The structure of 1 was considered as Figure 1. 1 H- 13 C long-range correlations were showed in Figure 1.

Diuranthoside E (2), $\left[\alpha\right]_{D}^{22}$ -23, gave neotigogenin as aglycone and galactose, glucose and xylose as sugar residues on acid hydrolysis on TLC. Its molecular formula was assigned as $C_{62}H_{102}O_{32}$ by HRFABMS. The IR, ¹H and ¹³C NMR spectra of **2** showed it is also a neotigogenin 3-O-glycoside². On comparison of ¹³C NMR spectrum with **1** and 2 only showed a set of additional signals of a terminal β -glucopyranosyl unit which was deduced to be attached to the hydroxy group at C-3(δ 87.8) of a terminal glucose of 1. In the FAB mass spectrum of 2, the fragment ion peak at m/z 1195[M - glc], $1033[M - 2 \times glc]^{-}$, $901[M - xyl-glc-glc]^{-}$ were present, but not $1063[M - xyl-glc]^{-}$. This suggested that the additional glucose should be linked to the glucose which was attached to C-3 of xylose. Consequently, the structure of **2** was established as **Figure 2**. The structure is further confirmed by HMBC spectrum (Figure 2).

The biological test showed both 1 and 2 have against Bacillus cereus.

Acknowledgments

This work was financially supported by the Special Project of Biological Science and Technology of the Chinese Academy of Sciences (STZ-97-3-08).

References

T. S. Ying, Y. L. Zhang, D. E. Boufford, *The Endemic Genera of Seed Plants of China*, Science press, Beijing **1993**, p. 720-722.
X. C. Li, Y. F. Wang, D. Z. Wang, C. R. Yang. *Phytochemistry*, **1990**. 29, 3899.

Received 7 July, 2000